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ABSTRACT: In this paper we present a Hybrid floating-point (FP) implementations improve software FP performance 
without increasing  the area overhead of hardware floating point units. The proposed implementations are synthesized 
in 65-nm CMOS and integrated into small fixed-point processors with a RISC-like architecture. Unsigned, shift carry, 
and leading zero detection (USL) support is added to a processor to increase the performance of the existing instruction 
set architecture and increase FP throughput. The hybrid implementations with USL support increase software FP 
throughput per core by 1.29× for multiplication and 3.07–4.05× for division and use 90.7–94.6% less area than 
dedicated  hardware. Hybrid implementations with custom FP-specific hardware increase throughput per core over a FP 
software kernel by  1.22–2.03× for multiplication, 14.4× for division, and use 77.2–97% less area than dedicated 
hardware. The circuit area and throughput are found for  6 multiplication, 45 division designs. Index Terms— 
Arithmetic and logic structures, computer arithmetic, fine-grained system, floating point (FP). 
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I. INTRODUCTION 
 

FLOATING-POINT (FP) representation is the most commonlyused method for approximating real numbers. 
However, the large area and powerneeds of FP hardware limit many architectures to fixed point, picoChip. Small chip 
area is needed formulit-core architectures, since incurring area per core has reduced the number of cores that will fit on a 
chip die.Many methods  have been proposed for increasing FPthroughput and  low area overhead. Fused andcascade 
multiply–add FPUs results in more arithmetic, for example, SDR architectures,Blackfin microprocessors accuracy and 
provide speedup ; though  they introduce large area  and power overhead, which is not suitable forsimple fixed-point 
processors. If blocks of data having  samemagnitudes, block FP (BFP) can be useful for increasing signal to noise 
ratioand dynamic range. Microoperations is beingused to create a virtual floating point unit, which uses existing fixed-
pointhardware to enhance the  FP datapath for a VLIW processor. The required hardware for FPdivision is also reduced 
by hardware prescaling and  postscaling  by shortening the exponent and mantissa.  Custom FP instructions have also 
been proposedfor a  FPGA to increase FP throughput with optimised areathan a dedicated  hardware FPU.This paper 
proposes  hybrid FP implementations, whichperforms FP  usinga combination of fixed-point software instructions and 
hardware. Hybrid implementations offers area–throughput tradeoffs either through  full software or hardware 
implementations.The main contributions of this paper are as follows.1) Two hybrid implementations with CFP hardware 
and six with USL support.2) Design and implementation of 6 multiplication and 45 division designs. These designs 
include full software kernels, full hardware modules, hybrid implementations with USL support and with CFP hardware. 
Three different algorithms for division  are used.3) Evaluation of the proposed software kernels, hardware modules, and 
hybrid implementations, and FPUs. 

II.LITERATURE SURVEY 
 

When hardware modules are used,it results in large area and high throughput.And when software kernels are used ,it 
results in low area and low throughput. 
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III. FLOATING-POINT COMPUTATION BACKGROUND 
 

A. Floating-Point Format: 
This  uses the IEEE-754 single-precision format for all FP arithmetic, with values on the normalized value interval 
±[2−126, (2−2−23)×2127]. Round to nearest even, the IEEE-754 default rounding mode, and round toward zero are 
supported for all FP arithmetic.  
 

B. Fating intagrithm: 
The FP operation algorithms are 
1) Multiplication: Multiplication operation starts by multiplying the mantissas. The initial power is set by adding the 
operand exponents, the resultant product is normalized and 
Rounded off, and the sign bit is given by XORing the sign bit of both operands. 
2)Division: Three algorithms are implemented for division:long-division, nonrestoring, and Newton–Raphson .It is 
typically an infrequent operation ; therefore, little area must be assigned. The long-division and nonrestoring algorithms 
are chosen for their simplicity and low area optimisation, while the Newton–Raphson algorithm is chosen for its high 
throughput. Initially the magnitude of dividend and divisor is compared by the long division method. If the divisor is 
lesser than or equal to the dividend, it should be subtracted from the dividend to form a partial remainder, and   1 is 
right shifted  as the next bit of the quotient. Or else, they are not subtracted and  0 is shifted. Then the  partial remainder 
is  left shifted by 1 bit and it is set as the new dividend. This process continues till all  the quotient bits are verified. The 
division result is normalized and  rounded off. The result is calculated by subtracting the input powers and adding back 
the bias. The nonrestoring division algorithm is same as  the restoring algorithm except the restoring step for each loop 
iteration. The dividend is subtracted from the divisor. If the result is positive or negative a loop is executed and quotient 
is shifted.If the result is negative, the dividend is added to the  partial result otherwise the least significant bit (LSB) of 
the quotient is set to 1 and the result gets subtracted from the dividend. This loop continues to iterate till all bits are 
checked for the quotient . The finally if the result is negative the result is restored. The final  result is normalized and 
rounded off. The exponent is calculated similar to long division.For the Newton–Raphson division algorithm, the 
reciprocal of the divisor is checked repeatedly and then the dividend gets multiplied. The divisor and dividend are 
prescaled to a small interval. A linear approximation is  used to calculate  the reciprocal and reduce the maximum 
relative error of the final result. This calculation is then improved repeatedly. Once this reciprocal is verified, it is 
multiplied by the prescaled dividend to get  the result,which is then extracted  by computing residuals at a higher 
precision. XORing the sign bits of the operands,we get the results. 

 

IV. FULL SOFTWARE KERNELS 
 

These are coded in AsAP instructions and forms a software library consisting of  multiplication and division. They are 
full software because they use only GP fixed-point instructions. The platforms word size is 2 bytes and each value is 
received on chip as two words. To simplify evaluation, the words are split into four to store the following: the sign bit, 
exponent, high and low mantissa bits. As these kernels use only the platforms existing fixedpoint datapath, they do not 
add area.The programs for these kernels are large due to the lack of unsigned ALU instructions and the number of FP 
instructions required for emulating FP hardware. Computation time for software FP comprises primarily of operand 
comparisons, mantissa alignment, addition, normalization, and rounding. 

1. Multiplication Kernel  
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 The instruction overheads for this kernel are used for calculating  mantissa multiplication and rounding. The 
partial products  are  added using the MAC and aligned by  the shifter. 

2. A.Division Kernel Version 1 
The kernel uses the long-division algorithm. The loop to determine the quotient requires the greatest number of 
instructions and involves several shift and subtract operations. 

2. B. Division Kernel Version 2  
This kernel uses the Newton-Raphson algorithm . The kernel starts with zero input detection and handling, followed by 
exponent calculation. The input is  prepared for later calculations. The  estimate of the reciprocal is calculated, followed 
by Newton-Raphson iterations. The initial input is then multiplied by the reciprocal of the second, and  the result is 
normalized and rounded. Then, the LSB is corrected. 

 
V. FULL HARDWARE MODULES 

 
These modules offer the highest throughput, but require the most area of the designs implemented. Full hardware 
modules are referred to as full hardware because all arithmetic is performed on dedicated FP hardware. As the target 
platform has a 16-bit datapath, the FP values are first loaded into FP registers. Each value is then stored as two 16-bit 
words. An entire FP operation is carried out by a single FP instruction and the results are read from the FP registers, 2 
bytes at a time. 

Multiplication Module 

This module uses the FPMult instruction with a one-cycle execution latency to perform multiplication. Full HW Mult 
(32-bit I/O) is created for a 32-bit datapath and word size and uses the FPMult32 instruction to perform multiplication 
with a single-cycle execution time delay. Assuming operands are read from a processors local memory, a single 
instruction can perform  multiplication. 

DIVISION MODULE  
This module performs the restoring division algorithm using FPDiv. This instruction has a 30-cycle execution 
latency.Full HW Div (32-bit I/O) is created for a 32-bit datapath and word size and uses the FPDiv32 instruction with a 
30-cycle execution latency. A single instruction performs division when operands are read from a processors local 
memory. 

VI. PROPOSED HYBRID IMPLEMENTATIONS WITH 
UNSIGNED, SHIFT-CARRY, AND LEADING 

ZERO DETECTION 

To determine the throughput and area achievable by increasing the instruction set, USL support is added to the target 
platforms ISA. Many ISA modifications are implemented, including adding unsigned operation support, leading zero 
detection, and additional shift-carry instructions. These extra shift instructions can set a carry flag when data are shifted 
out. 
Multiplication Hybrid Implementation With USL Support 
The unsigned multiply accumulate instructions decrease  the overhead for partial product calculation. The additional shift 
instruction makes it easy for normalization and the unsigned addition instructions reduce the instruction count for 
rounding. 
DIVISION HYBRID IMPLEMENTATION WITH USL SUPPORT VERSION 1 
This uses the long-division algorithm . Unsigned addition/subtraction and added shift instructionsreduce the IC for 
exponent calculation, divisor and dividend mantissa subtraction, rounding, and normalization. 

D. Division Hybrid Implementation With USL Support Version 2  

This implementation uses the Newton-Raphson algorithm . The multiply accumulate, and additional shift instructions 
reduce the instruction count for calculating the exponent and initial estimate,executing the Newton-Raphson iterations, 
multiplying the input by the reciprocal, rounding, and then correcting the LSB. 
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VII.PROPOSED HYBRID IMPLEMENTATIONS WITH CUSTOM FP-SPECIFIC HARDWARE 

Hybrid implementations with CFP hardware is composed of fixed-point software and custom FP instructions operating 
together on FP workloads. These increase the throughput by reducing the difficulties of full software kernels and require 
less area than full hardware modules.CFP instructions perform operations on data which is stored in FP registers, and 
each value is stored as two 16-bit words. 

A. Multiplication Hybrid Implementation With CFP Hardware Version 1 
This implementation calculates mantissa multiplication and exponent and sign bit calculation using fixed-point software 
instructions. FPMult_NormRndCarry performs the rest of the operation and is given as follows. 

    1) FPMult_NormRndCarry: After mantissa multiplication and exponent calculation, the product is loaded into an 
FP register. The normalized and rounded mantissa is given back into an FP register, the 16 MSBs are returned, and the 
carry flag is set. If the carry flag is set, the exponent is incremented by 1 in software.  
B .Multiplication Hybrid Implementation With CFP Hardware Version 2  

This implementation performs mantissa multiplication in software using FP instructions. FPMult_NormRnd performsthe 
rest of the operation and is described as follows. 

1) FPMult_NormRnd: Following software mantissa multiplication, the product, exponent, and sign bits are loaded 
into FP registers. The  sign bit, exponent, and normalized and rounded product are then calculated. 

Division Hybrid Implementation With CFP Hardware Version   

The nonrestoring division algorithm is used to perform FP division with this implementation. The exponent and sign bit 
of the result are then determined. The instruction described in the following performs the rest of the operation. 
1) FPDiv_LoopExpAdj: After the two inputs and the partially computed exponent are loaded into the FP registers,this 
instruction performs the division loop. The exponent is  adjusted in the hardware following normalization and then 
rounding. 

VIII. RESULTS AND COMPARISONS 

 
Every implementation is synthesized with a 65-nm CMOS standard cell library using Synopsys DC compiler with a 1.3 
V operating voltage and 25 °C operating temperature and clock frequencies of 600, 800, 1000, and 1200 MegaHertz. For 
the need of accuracy and performance analysis, FPgen, a test suite for verifying FP datapaths is used to include test cases 
unlikely to be covered by pure random test generation.This testing is supplemented by using pseudorandomly generated 
FP values on the normalized value interval ±[2−126, (2 − 2−23) × 2127]. With the exception of the full software kernels, 
every design adds circuitry to the platform processor, the area for this circuitry is referred to as additional area. 

A. Individual FP Designs Compared 

Additional area is plotted versus cycles per FLOP times the clock period in ns. The designs are plotted on separate 
graphs according to the type of operation. We can determine the optimal design with respect to an area constraint by 
selecting an implementation that uses less area than the constraint and requires the fewest average cycles per FLOP. For 
example,  consider an area constraint Amax equal to 10% of the target platform processor area. For this, more area is 
allocated for multiplication hardware because division is less frequent operations. The full hardware designs require the 
most area to achieve the highest throughput; however, none of these implementations meets the area constraint and the 
FMA is the largest implementation, increasing processor area by 33%. Except for multiplication, the hybrid 
implementations with USL support require the least area to improve throughput. They can also be used for general-
purpose workloads because the USL instructions are non-FP specific. For the full software kernels, division requires less 
cycles per FLOP using the long-division and digit-by-digit algorithms, respectively. But, the division hybrid 
implementations with USL support require slightly less cycles per FLOP when using the Newton-Raphson algorithm. 

 B. Comparison When Combining FP Designs 

To compare the throughput and area when adding multiple designs, the FP designs  are combined into 38 functionally 
equivalent FPU implementations consisting of an addition/subtraction and multiplication unit. These designs are 
evaluated for performing Newton-Raphson division. These Newton-Raphson and FMA implementations of the divide 
and square root are mapped in a pipelined fashion and loops are unrolled to potentially provide high throughput . The 
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multiplication and division implementations are compared with full software, full hardware, and hybrid designs using the 
long-division, digit-by-digit, nonrestoring, or Newton-Raphson algorithm. 

 
IX.ADVANTAGES OF HYBRID APPROACHES 

Implementing using software becomes the only option for floating point arithmetic when area cannot be improved. 
When the goal is maximum throughput, dedicated hardware unit becomes absolute. Hybrid designs are ideal than 
floating point hardware unit because they increase the throughput andrequire less area, when the area is constrained. 
They provide a procedure for fulfilling an area constraint that hardware units would contravene. By appending functions 
to prevailing hardware unit using hybrid designs with USL support it can simplify multiword operations. The hybrid 
implementation with CFP (Computing Forward Progress) can add custom hardware which performs specific steps of an 
floating point operation which can overshoot the performance of USL design support. Else,these techniques would 
require many fixed point instructions. The complete software design requires many operations on large multiword data 
values. Summing and carrying between partial products or carrying between words is the function required by multiword 
operation. The coder must neglect to use signed bit(bit 16 for target platform)and must manipulate carry flags and 
summation of partial product in software. Thus, fully utilized 16-bit words cannot be operated by signed hardware unit. 
Words must be divided into 15 bits each at most. The hybrid designs with USL assist provide unsigned hardware 
proficient handling of multiword values, increasing Newton-Raphson throughput. The methods like long-division and 
digit-by-digit are much less advantage, as they rely on more number of shifts. To discover the gain of different design 
approaches multiple hybrid designs with CFP are being implemented. Each class will differ in terms of which steps or 
the percentage of the floating point operation that is conducted in software. Based on the throughput increase and area 
overhead the steps that support hardware are justified. By supporting operand comparison in hardware Hybrid Add/Sub 
w/CFP Ver.3 improves the add/sub operation throughput the highest. Else, categorizing the operands to compare the 
exponent and multiword mantissa will require many instructions.For multiplication, by adding more hardware assist to 
Ver.1 Hybrid Mult w/CFP Ver.2 improves throughput the most. This execution will reduce the executed instruction 
count by determining if the outcome is zero and manipulating the sign bit and exponent in hardware. This secondary 
hardware circuitry increases the area.By implementing sign bit and exponent calculation the division and square root 
implementation will use lesser area in software than the dedicated hardware floating point unit and by executing the 
balance operation in hardware the throughput of these operations is improved.    

FULL  HW  MULT FPMULT 
FULL  HW  MULT (32-bit I/O) FPMULT32 
FULL  HW  DIV FPDIV 
FULL  HW  DIV  (32-bit I/O)  FPDIV32 
 

X. RELATED WORK AND COMPARISON 
 

Since this work gives single- precision floating point operations,we equate our outcomes with other work that improves 
single-precision floating point throughput with lesser area than a dedicated hardware implementation and we do not 
equate with designs using reduced floating point word size or Binary Floating Point(BFP).Our outcomes comprises 
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implementations with a 16-bit and 32-bit word size and datapath where everything is implemented using single-
precision floating point.Since not every task reports area data;to make a constant evaluation,the area overhead of each 
design is compared against dedicated hardware implementation reported in respective task. This paper describes about 
the area overhead for assisting each floating point operation independently.Thus, area is reported under floating point 
operation classes for which cycle counts are reported whereas other work do not issue area for particular operations.An 
unmerged operation is being performed for multiply-add by our operations,except for the FMA design.The work by 
Gilani  et al andViitanen et al. did not investigate modular implementations.With differing amount of modular 
implementation Hockert and Compton investigated modular design,but did not examine the overhead for assisting 
independent floating point operations.Granting more adaptability across a wide range of area constraints for improving 
floating point throughput,our work presents a larger range ofarea overheads.For both divide and square operation,our 
designs need less area than FMA and also offerlowest cycles per FLOP.Our 32-bit I/O  implementations has achieved 
the lowest cycles per FLOP for all operation classes when equated  with other work that decrease floating point area 
overhead compared with dedicated floating point hardware.                 

 

 

XI. CONCLUSION 

 
In this paper, two hybrid implementations with CFP hardware and hybrid implementations with USL support are 

presented for a fixed-point processor. These implementations increase the throughput of FP operations by adding USL 
support instructions to the ISA, and custom FP instructions. The area overhead is kept low by utilizing the existing 
fixedpoint functional units. The circuit area and throughput are found for 6 multiplication, 45 division designs. This 
paper presents designs that improve FP throughput versus a baseline software implementation and require less area 
overhead compared with an FMA than other works. Many examples demonstrate how to determine the optimal FP 
designs for a given area constraint. Hybrid implementation is an effective design method for increasing FP throughput 
and require up to 97% less area than a traditional FMA. 
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